On coderivatives and lipschitzian properties of the dual pair in optimization

In this paper we apply the concept of coderivative and other tools from the generalized di§erentiation theory for set-valued mappings to study the stability of the feasible sets of both, the primal and the dual problem in infinite-dimensional linear optimization with infinitely many explicit const...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: López, Marco A., Ridolfi, Andrea B., Vera de Serio, Virginia N.
Publicado: 2011
Materias:
Acceso en línea:https://bdigital.uncu.edu.ar/fichas.php?idobjeto=11807
date_str_mv 2011-06-29
object_type_str_mv Artículo
descriptores_str_mv Coderivative
Dual pair and duality theory
Infinite programming
Programación infinita
Programación lineal
Programación semi infinita
Semi-infinite programming
Stability
Teoría de la dualidad
todos_str_mv CONICET-UNCUYO
UdeAlicante
UNCuyo FCAI
UNCuyo FCE
UNCuyo ICB
description_str_mv In this paper we apply the concept of coderivative and other tools from the generalized di§erentiation theory for set-valued mappings to study the stability of the feasible sets of both, the primal and the dual problem in infinite-dimensional linear optimization with infinitely many explicit constraints and an additional conic constraint. After providing some specific duality results for our dual pair, we study the Lipschitz-like property of both mappings and also give bounds for the associated Lipschitz moduli. The situation for the dual shows much more involved than the case of the primal problem.
autor_str_mv López, Marco A.
Ridolfi, Andrea B.
Vera de Serio, Virginia N.
disciplina_str_mv Matemática
titulo_str_mv On coderivatives and lipschitzian properties of the dual pair in optimization
id 11807
plantilla_str Producción Científico Académica
record_format Producción Científico Académica
tipo_str textuales
type_str_mv Articulos
title_full On coderivatives and lipschitzian properties of the dual pair in optimization
title_fullStr On coderivatives and lipschitzian properties of the dual pair in optimization
On coderivatives and lipschitzian properties of the dual pair in optimization
title_full_unstemmed On coderivatives and lipschitzian properties of the dual pair in optimization
On coderivatives and lipschitzian properties of the dual pair in optimization
description In this paper we apply the concept of coderivative and other tools from the generalized di§erentiation theory for set-valued mappings to study the stability of the feasible sets of both, the primal and the dual problem in infinite-dimensional linear optimization with infinitely many explicit constraints and an additional conic constraint. After providing some specific duality results for our dual pair, we study the Lipschitz-like property of both mappings and also give bounds for the associated Lipschitz moduli. The situation for the dual shows much more involved than the case of the primal problem.
title On coderivatives and lipschitzian properties of the dual pair in optimization
spellingShingle On coderivatives and lipschitzian properties of the dual pair in optimization
Coderivative
Dual pair and duality theory
Infinite programming
Programación infinita
Programación lineal
Programación semi infinita
Semi-infinite programming
Stability
Teoría de la dualidad
López, Marco A.
Ridolfi, Andrea B.
Vera de Serio, Virginia N.
topic Coderivative
Dual pair and duality theory
Infinite programming
Programación infinita
Programación lineal
Programación semi infinita
Semi-infinite programming
Stability
Teoría de la dualidad
topic_facet Coderivative
Dual pair and duality theory
Infinite programming
Programación infinita
Programación lineal
Programación semi infinita
Semi-infinite programming
Stability
Teoría de la dualidad
publishDate 2011
author López, Marco A.
Ridolfi, Andrea B.
Vera de Serio, Virginia N.
author_facet López, Marco A.
Ridolfi, Andrea B.
Vera de Serio, Virginia N.
title_sort On coderivatives and lipschitzian properties of the dual pair in optimization
title_short On coderivatives and lipschitzian properties of the dual pair in optimization
url https://bdigital.uncu.edu.ar/fichas.php?idobjeto=11807
estado_str 3
building Biblioteca Digital
filtrotop_str Biblioteca Digital
collection Producción Científico Académica
institution Sistema Integrado de Documentación
indexed_str 2023-04-25 00:36
_version_ 1764120179008077824