Making genetic biodiversity measurable
Measures of agro-ecosystems genetic variability are essential to sustain scientific-based actions and policies tending to protect the ecosystem services they provide. To build the genetic variability datum it is necessary to deal with a large number and different types of variables. Molecular mar...
Guardado en:
Publicado en: | Revista de la Facultad de Ciencias Agrarias |
---|---|
Autores principales: | , , , |
Materias: | |
Acceso en línea: | https://bdigital.uncu.edu.ar/fichas.php?idobjeto=3936 |
descriptores_str_mv |
Clustering Córdoba (Argentina) Estadísticas agrícolas Multivariate association Ordination Spatial variability Variabilidad espacial Variación genética |
---|---|
todos_str_mv |
3866 78 eng UNC_FCA_CEB UNC_FCA_CEB UNC_FCA_CEB UNC_FCA_CRyERAyN |
autor_str_mv |
Balzarini, Mónica Bruno, Cecilia Peña, Andrea Teich, Ingrid |
disciplina_str_mv |
Ciencias agrarias |
titulo_str_mv |
Cuantificando diversidad genética Making genetic biodiversity measurable |
description_str_mv |
Measures of agro-ecosystems genetic variability are essential to sustain scientific-based
actions and policies tending to protect the ecosystem services they provide. To build the genetic
variability datum it is necessary to deal with a large number and different types of variables.
Molecular marker data is highly dimensional by nature, and frequently additional types of
information are obtained, as morphological and physiological traits. This way, genetic variability
studies are usually associated with the measurement of several traits on each entity. Multivariate
methods are aimed at finding proximities between entities characterized by multiple traits by
summarizing information in few synthetic variables.
In this work we discuss and illustrate several multivariate methods used for different
purposes to build the datum of genetic variability. We include methods applied in studies for
exploring the spatial structure of genetic variability and the association of genetic data to
other sources of information. Multivariate techniques allow the pursuit of the genetic variability
datum, as a unifying notion that merges concepts of type, abundance and distribution of
variability at gene level.
Obtener estimaciones confiables de la diversidad genética en los agroecosistemas es esencial para tomar decisiones basadas en el conocimiento científico que permitan proteger los servicios ecosistémicos que éstos brindan. Para construir el dato de variabilidad genética es necesario trabajar con gran cantidad de variables de distinta naturaleza. Los marcadores moleculares proveen datos multidimensionales que generalmente son complementados con otros tipos de información, por ejemplo datos morfológicos o fisiológicos. Así, los estudios sobre variabilidad genética están frecuentemente asociados a la medición de muchos caracteres en una misma entidad biológica. De especial interés son los métodos multivariados diseñados para analizar similitudes entre entidades caracterizadas por múltiples variables que permiten resumir la información en pocas variables sintéticas informativas de la variabilidad total. En este trabajo se discuten e ilustran distintos métodos multivariados utilizados en la construcción del dato de variabilidad genética. Se incluyen métodos aplicados a la exploración de la estructura espacial de la variabilidad genética y métodos para estudiar la asociación de los datos genéticos con otras fuentes de información. Las técnicas multivariadas en esta revisión permiten abordar el problema de construir al dato de variabilidad genética como un concepto donde convergen mediciones sobre tipo, abundancia y distribución de la variabilidad a nivel de genes. |
object_type_str_mv |
Textual: Revistas |
id |
3936 |
plantilla_str |
Artículo de Revista |
record_format |
article |
container_title |
Revista de la Facultad de Ciencias Agrarias |
journal_title_str |
Revista de la Facultad de Ciencias Agrarias |
journal_id_str |
r-78 |
container_issue |
Revista de la Facultad de Ciencias Agrarias |
container_volume |
Vol. 43, no. 1 |
journal_issue_str |
Vol. 43, no. 1 |
tipo_str |
textuales |
type_str_mv |
Articulos |
title_full |
Making genetic biodiversity measurable |
title_fullStr |
Making genetic biodiversity measurable Making genetic biodiversity measurable |
title_full_unstemmed |
Making genetic biodiversity measurable Making genetic biodiversity measurable |
description |
Measures of agro-ecosystems genetic variability are essential to sustain scientific-based
actions and policies tending to protect the ecosystem services they provide. To build the genetic
variability datum it is necessary to deal with a large number and different types of variables.
Molecular marker data is highly dimensional by nature, and frequently additional types of
information are obtained, as morphological and physiological traits. This way, genetic variability
studies are usually associated with the measurement of several traits on each entity. Multivariate
methods are aimed at finding proximities between entities characterized by multiple traits by
summarizing information in few synthetic variables.
In this work we discuss and illustrate several multivariate methods used for different
purposes to build the datum of genetic variability. We include methods applied in studies for
exploring the spatial structure of genetic variability and the association of genetic data to
other sources of information. Multivariate techniques allow the pursuit of the genetic variability
datum, as a unifying notion that merges concepts of type, abundance and distribution of
variability at gene level.
|
dependencia_str_mv |
Facultad de Ciencias Agrarias |
title |
Making genetic biodiversity measurable |
spellingShingle |
Making genetic biodiversity measurable Clustering Córdoba (Argentina) Estadísticas agrícolas Multivariate association Ordination Spatial variability Variabilidad espacial Variación genética Balzarini, Mónica Bruno, Cecilia Peña, Andrea Teich, Ingrid |
topic |
Clustering Córdoba (Argentina) Estadísticas agrícolas Multivariate association Ordination Spatial variability Variabilidad espacial Variación genética |
topic_facet |
Clustering Córdoba (Argentina) Estadísticas agrícolas Multivariate association Ordination Spatial variability Variabilidad espacial Variación genética |
author |
Balzarini, Mónica Bruno, Cecilia Peña, Andrea Teich, Ingrid |
author_facet |
Balzarini, Mónica Bruno, Cecilia Peña, Andrea Teich, Ingrid |
title_sort |
Making genetic biodiversity measurable |
title_short |
Making genetic biodiversity measurable |
url |
https://bdigital.uncu.edu.ar/fichas.php?idobjeto=3936 |
estado_str |
3 |
building |
Biblioteca Digital |
filtrotop_str |
Biblioteca Digital |
collection |
Artículo de Revista |
institution |
Sistema Integrado de Documentación |
indexed_str |
2023-04-25 00:38 |
_version_ |
1764120324594466816 |