Micro flows : fundamentals and simulation /

Guardado en:
Detalles Bibliográficos
Autor principal: Karniadakis, George.
Otros Autores: Beskök, Ali, 1966-
Formato: Libro
Lenguaje:
Publicado: New York : Springer, 2002.
Materias:
Acceso en línea:Indice
Tabla de Contenidos:
  • Machine generated contents note: 1 Basic Concepts and Technologies 1
  • 1.1 New Flow Regimes in MEMS1
  • 1.2 The Continuum Hypothesis7
  • 1.2.1 Molecular Magnitudes11
  • 1.2.2 Mixed Flow Regimes16
  • 1.2.3 Experimental Evidence17
  • 1.3 The Pioneers21
  • 1.4 Full-System Simulation of MEMS24
  • 1.5 Modeling of Micro Flows31
  • 2 Governing Equations and Slip Models 39
  • 2.1 The Basic Equations of Fluid Dynamics39
  • 2.1.1 Incompressible Flow42
  • 2.1.2 Reduced Models44
  • 2.2 Compressible Flow45
  • 2.2.1 First-Order Models47
  • 2.2.2 The Role of the Accommodation Coefficients49
  • 2.3 High-Order Models53
  • 2.3.1 Derivation of High-Order Slip Models54
  • 2.3.2 General Slip Condition57
  • 2.3.3 Comparison of Slip Models61
  • 3 Shear-Driven and Separated
  • Micro Flows 63
  • 3.1 Couette Flow63
  • 3.2 Cavity Flow67
  • 3.3 Grooved Channel Flow68
  • 3.4 Separated Internal Flows71
  • 3.4.1 Validation of Slip Models with DSMC77
  • 3.5 Separated External Flows83
  • 4 Pressure-Driven Micro Flows:
  • Slip Flow Regime 87
  • 4.1 Isothermal Compressible Flows87
  • 4.2 Adiabatic Compressible Flows - Fanno Theory95
  • 4.3 Inlet Flows101
  • 4.4 Validation of Slip Models with DSMC102
  • 4.5 Effects of Roughness108
  • 5 Pressue-Driven Micro Flows: Transition and
  • Free-Molecular Regimes 113
  • 5.1 Transition and Free-Molecular Flow Regimes113
  • 5.2 Burnett Equations in Micro Channels117
  • 5.3 A Unified Flow Model119
  • 5.3.1 Velocity Scaling 119
  • 5.3.2 Flowrate Scaling122
  • 5.3.3 Model for Pipe and Duct Flows127
  • 6 Thermal Effects in Micro Scales 139
  • 6.1 Thermal Creep (Transpiration)139
  • 6.1.1 Simulation Results141
  • 6.1.2 A Thermal Creep Experiment145
  • 6.1.3 Knudsen Compressors146
  • 6.1.4 Other Temperature-Induced Flows147
  • 6.1.5 Heat Conduction and the Ghost Effect149
  • 6.2 Heat Transfer in Micro Poiseuille Flows151
  • 6.3 Heat Transfer in Micro Couette Flows158
  • 7 Prototype Applications of Gas
  • Micro Flows 163
  • 7.1 Gas Damping and Dynamic Response of MEMS163
  • 7.1.1 Reynolds Equation166
  • 7.1.2 Squeezed Film Effects in Accelerometers173
  • 7.2 Micro Propulsion and Micro Nozzle Flows178
  • 7.2.1 Micro Propulsion Analysis180
  • 7.2.2 Rarefaction and Other Effects184
  • 8 Electrokinetically Driven Liquid
  • Micro Flows 193
  • 8.1 Electrokinetic Effects - Review194
  • 8.2 The Electric Double Layer195
  • 8.3 Near-Wall Potential Distribution197
  • 8.4 Governing Equations for Electroosmotic Flows199
  • 8.4.1 Numerical Formulation and Validation200
  • 8.5 Electrokinetic Micro Channel Flows202
  • 8.6 EDL/Bulk Flow Interface Velocity
  • Matching Condition207
  • 8.7 Electroosmotic Slip Condition208
  • 8.7.1 Approximate Evaluation of Drag Force due to
  • Electroosmotic Effects209
  • 8.8 Complex Geometry Flows210
  • 8.8.1 Cross-Flow Junctions211
  • 8.8.2 Array of Circular and Square Posts213
  • 8.9 Dielectrophoresis215
  • 9 Numerical Methods for
  • Continuum Simulation 223
  • 9.1 A High-Order Numerical Method: The Flow Code224
  • 9.1.1 Formulation for Incompressible Micro Flows228
  • 9.1.2 Formulation for Compressible Micro Flows231
  • 9.1.3 Implementation of Slip Boundary Conditions236
  • 9.1.4 Validation Problems237
  • 9.2 A Meshless Numerical Method239
  • 9.3 The Force Coupling Method for Particulate
  • Micro Flows246
  • 10 Numerical Methods for
  • Atomistic Simulation 257
  • 10.1 Molecular Dynamics (MD) Method257
  • 10.1.1 MD-Continumm Coupling263
  • 10.2 Direct Simulation Monte Carlo (DSMC) Method266
  • 10.2.1 Limitations and Errors in DSMC269
  • 10.2.2 DSMC-Information Preservation Method274
  • 10.2.3 DSMC-Continuum Coupling275
  • 10.3 The Boltzmann Equation279
  • 10.3.1 General Theory279
  • 10.3.2 Classical Solutions of Boltzmann Equation284
  • 10.3.3 Sone's Asymptotic Theory of
  • Boltzmann Equation288
  • 10.3.4 Numerical Solutions of Boltzmann Equation297
  • 10.3.5 Non-Isothermal Flows301
  • 10.4 Lattice-Boltzmann Method (LBM)303
  • 10.4.1 Comparison with Navier-Stokes Solution306
  • 10.4.2 LBM Simulation of Micro Flows308
  • Bibliography 311
  • Index 335.