Analyzing neural time series data : theory and practice /

A comprehensive guide to the conceptual, mathematical, and implementational aspects of analyzing electrical brain signals, including data from MEG, EEG, and LFP recordings. This book offers a comprehensive guide to the theory and practice of analyzing electrical brain signals. It explains the concep...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Cohen, Mike X., 1979-
Formato: Libro
Lenguaje:
Publicado: Cambridge, Massachusetts : The MIT Press, c2014.
Colección:Issues in clinical and cognitive neuropsychology
Materias:
Acceso en línea:Indice
Tapa
LEADER 03286cam#a2200385#a#4500
001 BCCAB018810
008 130610s2014####maua###f#b####001#0#eng##
005 20191030124245.0
003 AR-BCCAB
245 1 0 |a Analyzing neural time series data :  |b theory and practice /  |c Mike X. Cohen. 
260 # # |a Cambridge, Massachusetts :  |b The MIT Press,  |c c2014. 
300 # # |a xviii, 578 p., 16 unnumbered pages of plates :  |b il. ;  |c 24 cm. 
490 0 # |a Issues in clinical and cognitive neuropsychology 
504 # # |a Incluye referencias bibliográficas e índice. 
520 # # |a A comprehensive guide to the conceptual, mathematical, and implementational aspects of analyzing electrical brain signals, including data from MEG, EEG, and LFP recordings. This book offers a comprehensive guide to the theory and practice of analyzing electrical brain signals. It explains the conceptual, mathematical, and implementational (via Matlab programming) aspects of time-, time-frequency- and synchronization-based analyses of magnetoencephalography (MEG), electroencephalography (EEG), and local field potential (LFP) recordings from humans and nonhuman animals. It is the only book on the topic that covers both the theoretical background and the implementation in language that can be understood by readers without extensive formal training in mathematics, including cognitive scientists, neuroscientists, and psychologists. Readers who go through the book chapter by chapter and implement the examples in Matlab will develop an understanding of why and how analyses are performed, how to interpret results, what the methodological issues are, and how to perform single-subject-level and group-level analyses. Researchers who are familiar with using automated programs to perform advanced analyses will learn what happens when they click the "analyze now" button. The book provides sample data and downloadable Matlab code. Each of the 38 chapters covers one analysis topic, and these topics progress from simple to advanced. Most chapters conclude with exercises that further develop the material covered in the chapter. Many of the methods presented (including convolution, the Fourier transform, and Euler's formula) are fundamental and form the groundwork for other advanced data analysis methods. Readers who master the methods in the book will be well prepared to learn other approaches. 
020 # # |a 9780262019873 (hardcover : alk. paper) 
100 1 # |a Cohen, Mike X.,  |d 1979- 
080 # # |a 681.3:519.713 
650 # 7 |a Neural networks  |2 inist 
650 # 7 |a Artificial intelligence  |2 inist 
650 # 7 |a Redes neuronales  |2 inist 
650 # 7 |a Inteligencia artificial  |2 inist 
653 # # |a Electrical brain signals 
653 # # |a Señales eléctricas del cerebro 
653 # # |a Magnetoencephalography 
653 # # |a Magnetoencefalografía 
653 # # |a Electroencephalography 
653 # # |a Electroencefalografía 
690 # # |a Maestría en Física Médica 
010 # # |a ##2013016461 
040 # # |a DLC  |b eng  |c DLC  |e rda  |d DLC  |d arbccab 
856 4 1 |u http://campi.cab.cnea.gov.ar/tocs/23775.pdf  |3 Indice 
856 4 1 |u https://images-eu.ssl-images-amazon.com/images/I/418L2R8dRfL.jpg  |3 Tapa 
942 # # |c BK 
952 # # |2 udc  |a ARBCCAB  |b ARBCCAB  |d 20190313  |e Nuñez Alfredo  |i 23775  |o 681.3:519.713 C660  |p 23775  |t 1  |y BK