Differential geometry : bundles, connections, metrics and curvature /

Bundles, connections, metrics and curvature are the 'lingua franca' of modern differential geometry and theoretical physics. This book will supply a graduate student in mathematics or theoretical physics with the fundamentals of these objects. Many of the tools used in differential topolog...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Taubes, Clifford H.
Formato: Sin ejemplares
Lenguaje:
Publicado: Oxford ; New York : Oxford University Press, c2011.
Colección:Oxford graduate texts in mathematics ; 23
Materias:
Acceso en línea:Índice
Tapa
LEADER 02478cam#a22003497a#4500
001 BCCAB020344
003 AR-BCCAB
005 20230421130812.0
008 120106s2011####enkd###f#b####001#0#eng#d
016 7 # |a 015700674  |2 Uk 
020 # # |a 9780199605873 
040 # # |a SINUS  |c SINUS  |d UKMGB  |d BTCTA  |d YDXCP  |d CDX  |d NLE  |d BWX  |d IXA  |d DCU  |d OUP  |d MUU  |d IXA  |d UBY  |d IG$  |d VRC  |d DLC  |b spa  |d arbccab 
080 # # |a 514.75 
100 1 # |a Taubes, Clifford H. 
245 1 0 |a Differential geometry :  |b bundles, connections, metrics and curvature /  |c Clifford Henry Taubes. 
260 # # |a Oxford ;  |a New York :  |b Oxford University Press,  |c c2011. 
300 # # |a xiii, 298 p. :  |b il. ;  |c 24 cm. 
490 1 # |a Oxford graduate texts in mathematics ;  |v 23 
504 # # |a incluye referencias bibliográficas e índice. 
520 # # |a Bundles, connections, metrics and curvature are the 'lingua franca' of modern differential geometry and theoretical physics. This book will supply a graduate student in mathematics or theoretical physics with the fundamentals of these objects. Many of the tools used in differential topology are introduced and the basic results about differentiable manifolds, smooth maps, differential forms, vector fields, Lie groups, and Grassmanians are all presented here. Other material covered includes the basic theorems about geodesics and Jacobi fields, the classification theorem for flat connections, the definition of characteristic classes, and also an introduction to complex and Kahler geometry. Differential Geometry uses many of the classical examples from, and applications of, the subjects it covers, in particular those where closed form expressions are available, to bring abstract ideas to life. Helpfully, proofs are offered for almost all assertions throughout. All of the introductory material is presented in full and this is the only such source with the classical examples presented in detail. 
650 # 7 |a Differential geometry  |2 inist 
650 # 7 |a Differential topology  |2 inist 
650 # 7 |a Geometría diferencial  |2 inist 
650 # 7 |a Grupos de Lie  |2 inist 
650 # 7 |a Lie groups  |2 inist 
650 # 7 |a Topología differential  |2 inist 
653 # # |a Campo vectorial 
653 # # |a Vectorial fields 
856 4 1 |u http://campi.cab.cnea.gov.ar/tocs/24726.pdf  |3 Índice 
856 4 1 |u https://m.media-amazon.com/images/I/41S2Y4ltCOL.%5FSX313%5FBO1,204,203,200%5F.jpg  |3 Tapa 
942 # # |c BK 
952 # # |2 udc  |a ARBCCAB  |b ARBCCAB  |d 20230308  |g 14-3-0042-OC23  |i 24726  |o 514.75 T191  |p 24726  |t 1  |y BK