An introduction to statistical learning : with applications in R /

An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. Thi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Otros Autores: Hastie, Trevor., James, Gareth., Tibshirani, Robert., Witten, Daniela.
Formato: Sin ejemplares
Lenguaje:
Publicado: New York : Springer, c2021.
Edición:2nd ed.
Colección:Springer texts in statistics ; 103
Materias:
Acceso en línea:Índice
Tapa
LEADER 03625cam#a22004457a#4500
001 BCCAB020345
003 AR-BCCAB
005 20230419121649.0
008 130326s20212013nyud###f######001#0#eng#d
020 # # |a 9781071614174 
040 # # |a BTCTA  |b eng  |c BTCTA  |d YDXCP  |d OHX  |e rda  |d VTU  |d IQU  |d CDX  |d SINIE  |d DLC  |d arbccab 
080 # # |a 519.2 
245 0 3 |a An introduction to statistical learning :  |b with applications in R /  |c Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. 
250 # # |a 2nd ed. 
260 # # |a New York :  |b Springer,  |c c2021. 
300 # # |a xvi, 426 pages :  |b illustrations (some color) ;  |c 24 cm. 
490 1 # |a Springer texts in statistics ;  |v 103 
500 # # |a Incluye índice. 
520 # # |a An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance to marketing to astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra. This Second Edition features new chapters on deep learning, survival analysis, and multiple testing, as well as expanded treatments of naïve Bayes, generalized linear models, Bayesian additive regression trees, and matrix completion. R code has been updated throughout to ensure compatibility. 
650 # 7 |a Aprendizaje automático  |2 inist 
650 # 7 |a Estadística  |2 inist 
650 # 7 |a Lenguajes de programación  |2 inist 
650 # 7 |a Machine learning  |2 inist 
650 # 7 |a Mathematical models  |2 inist 
650 # 7 |a Modelos matemáticos  |2 inist 
650 # 7 |a Programming languages  |2 inist 
650 # 7 |a Statistics  |2 inist 
653 # # |a Aprendizaje estadístico 
653 # # |a Estadística matemática 
653 # # |a Mathematical statistics 
653 # # |a Statistical learning 
700 1 # |a Hastie, Trevor. 
700 1 # |a James, Gareth. 
700 1 # |a Tibshirani, Robert. 
700 1 # |a Witten, Daniela. 
856 4 1 |u http://campi.cab.cnea.gov.ar/tocs/24727.pdf  |3 Índice 
856 4 1 |u https://m.media-amazon.com/images/I/41RgG05lZaL.%5FSX329%5FBO1,204,203,200%5F.jpg  |3 Tapa 
942 # # |c BK 
952 # # |2 udc  |a ARBCCAB  |b ARBCCAB  |d 20230308  |e Ciencia y Técnica  |g $28.500,00  |i 24727  |o 519.2 J231 Ed.2  |p 24727  |t 1  |y BK 
952 # # |2 udc  |a ARBCCAB  |b ARBCCAB  |d 20230308  |e Ciencia y Técnica  |g $28.500,00  |i 24728  |o 519.2 J231 Ed.2 Ej.2  |p 24728  |t 2  |y BK