Vectors, tensors, and the basic equations of fluid mechanics /

This excellent text develops and utilizes mathematical concepts to illuminate physical theories. Directed primarily to engineers, physicists, and applied mathematicians at advanced undergraduate and graduate levels, it applies the mathematics of Cartesian and general tensors to physical field theori...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Aris, Rutherford.
Formato: Sin ejemplares
Lenguaje:
Publicado: New York : Dover Publications, c1989.
Colección:Dover books on engineering
Materias:
Acceso en línea:Indice
Tapa
LEADER 02487pam#a2200337#a#4500
001 BCCAB020451
003 AR-BCCAB
005 20240517135123.0
008 890824s19891962nyua###f#b####001#0#eng##
020 # # |a 0486661105 
040 # # |a DLC  |c DLC  |d DLC  |b spa  |d arbccab 
080 # # |a 514.74 
100 1 # |a Aris, Rutherford. 
245 1 0 |a Vectors, tensors, and the basic equations of fluid mechanics /  |c Rutherford Aris. 
260 # # |a New York :  |b Dover Publications,  |c c1989. 
300 # # |a xiv, 286 p. :  |b il. ;  |c 22 cm. 
440 # 0 |a Dover books on engineering 
504 # # |a Incluye referencias bibliográficas e índice. 
520 # # |a This excellent text develops and utilizes mathematical concepts to illuminate physical theories. Directed primarily to engineers, physicists, and applied mathematicians at advanced undergraduate and graduate levels, it applies the mathematics of Cartesian and general tensors to physical field theories and demonstrates them chiefly in terms of the theory of fluid mechanics. Essentially an introductory text, intended for readers with some acquaintance with the calculus of partial differentiation and multiple integration, it first reviews the necessary background material, then proceeds to explore the algebra and calculus of Cartesian vectors and tensors. Subsequent chapters take up the kinematics of fluid motion, stress in fluids, equations of motion and energy in Cartesian coordinates, tensors, and equations of fluid flow in Euclidean space. The concluding chapters discuss the geometry of surfaces in space, the equations of surface flow and equations for reacting fluids. Two invaluable appendixes present a resume of 3-dimensional coordinate geometry and matrix theory and another of implicit functions and Jacobians. A generous number of exercises are an integral part of the presentation, providing numerous opportunities for manipulation and extension of the concepts presented. 
650 # 7 |a Computational fluid dynamics  |2 inist 
650 # 7 |a Dinámica de fluidos computacional  |2 inist 
650 # 7 |a Fluid mechanics  |2 inist 
650 # 7 |a Mecánica de fluidos  |2 inist 
653 # # |a Análisis vectorial 
653 # # |a Cálculos de tensores 
653 # # |a Calculus of tensors 
653 # # |a Vector analysis 
856 4 1 |u http://campi.cab.cnea.gov.ar/tocs/24865.pdf  |3 Indice 
856 4 1 |u https://m.media-amazon.com/images/I/51yLgaGnSNL.%5FSY466%5F.jpg  |3 Tapa 
942 # # |c BK 
952 # # |2 udc  |a ARBCCAB  |b ARBCCAB  |d 20240516  |i 24865  |o 514.74 Ar44  |p 24865  |t 1  |y BK